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SIMPLE EXAMPLES OF

NONLINEAR TRUSS BEHAVIOR

by

Philip G. Hodge, Jr.

Professor of Mechanics

University of Minnesota

1. Introduction. The theory of linear elasticity is a very

"nice" mathematical theory with many convenient features such as

superposition, uniqueness, and the equivalence of proportional

loading to proportional stressing. Theories involving nonlinear 4

material behavior do not necessarily have these nice features, and

it is instructive to consider very simple examples which dramatically

illustrate this fact.

In 1951 Drucker i) considered a simple 3-bar truss I

essentially similar to the one shown in Fig. 1 which is subjected

to a single monotonically increasing vertical load corresponding

to the load Q. In Drucker's example each bar is made of an

elastic/perfectly-plastic material with identical elastic properties

but different yield strengths. For a suitable choice of yield

strengths, bar 1 will first yield in compression but will then

unload and will eventually yield in tension when the truss fails. -

The present author 12, 3] has made frequent use of trusses similar .

to the one in Fig. 1. X
The present note shows how this truss can be used to

. . .....
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discuss two different models of non-linear material behavior

in relation to the above-mentioned features of superposition,

uniqueness, and proportional stressing.

The two models to be treated are the familiar elastic/

perfectly-plastic (E/PP) one illustrated by the ddshed curve in

Fig. 2, and an idealized elastic buckling (E/L3) model indicated

by the solid curve. Since we are primarily concerned with

compressive stresses, we define the bar shortening and the neg-

ative bar force by

s -L. C C. =-A a (1)6 1 i I i

The buckling model places no limit on negative values of

C. (it would be a trivial extension to construct a combined1

model wnich yielded in tension and buckled in compression) but

an equally important difference in the two models occurs on

unloading. At point B, for example, the E/PP model unloads

along BCD whereas the E/B model retraces the loadinq path BAOG.

The next section lists the defining equations for the truss

in Fig. 1 according to the two models, and the concluding section

defines three specific examples chosen to illustrate reverse stressinq

under a monotonic load, non-uniqueness, and superposition, in

that order. A summary of results are given in Section 3, and

some details of the solutions are included in the Appendix.

2. Equations. The cross bat AB is assumed rigid and the

three vertical bars all have the same modulus E, aiea A, and

minimum moment of inertia I. We find it convenient to use

asterisks to represent physical quantities and define dimens ioitl.. t

variables as indicated below. For both mode -s, we detine tl. ;t It!I

ness of bar 2 by



k AE/IH (2)

where if is the length of the bar. For tile E/B model we use th,-

simple Euler buckling formula for a pinned bar and denote the

snortening of bar 2 at the onset of bucklinq by

s cr = 2EI R ' TI2 1
cr Fi 3)H _ l~k H2 AE Al

We then define dimensionless displacements v and w, loads I' and Q,

shortenings si, and compressive forces Ci by

* - -i /-

V = v /S W W /S s.i  S/S

P = P*/ks Q = Q*/ks C. = C /ks

For the E/PP model, let Y be the yield force in bar 2 and

define the above variables by the similar formulas

v = kv*/y w kw*/Y s. = ks./Y

(5)

P = P*/Y Q Q*/Y C. = C*/Y

We denote the length of bar i by ai H where a2 = I and we

will choose aI and a3 in each exarple. In view of the above

definitions, the shortening at whi .h bar i buckles is then given

by

1 
1

J[ __
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So that the two models will have the same scale in Fiq. 2, we

choose the yield stress in bar i to be inversely proportional to

the square of its length, hence

Y i 1/a2 (7)

We assume that all displacements are small so that the only

non-linearity is the material behavior, and the three bars can be

taken to remain vertical. The kinematics are given by

As. (4Aw - 3Av, Av, 2Av - Aw) (8)I

where we find it convenient to use the incrementa] form for

all equations. The statics are obtained from moment equilibrium

about the two loads:

AP = -3AC 1 + LC2  2AC (9a)

1 2 3

Q= 4AC 1 - AC (9b)
3

Finally, the constitutive equation for each bar in the E/11P

model may be written

2
IF (Ci = ±/0 i  AND CAs > 0)

THEN AC. = 0 ELSE 6Ci = Asi/a i (10)

For the E/B model the equation is similar but significantly

different:

IF s. > 1/(li THEN AC. = 0

ELSE ACi = AS./ i  (/a)

i,.
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In each case the ELSE clause represents elastic behavior and

the IF clause represents the idealized inelastic behavior. When

all three bars are elastic, the solution for either model majy be

written

AP (9_ + 1 + 4)AV - (12 + _)Aw (12)

Q=_12 2 ,v+(16 1
=(L- + -)Av + (-L + -)Aw (12b)

a I 1 3 a1 a3

Equations (12) could be solved for Av and Aw. However, in each

of our examples we will apply only one load at a time so that the

zero load equation is trivially solved to relate AV and Lw and the

other equation relates load and displacement. In all cases,

we will regard one of the displacements as the control variable.

3. Examples. As an example to illustrate unstressing

we take a. = (2, 1, 4), let Q be the only load, and increase the1

control displacement w under Q from 0 to 3. For the E/1PP model

this example is essentially similar to Drucker's [1).

The results are shown in Table 1 and Figs. 3 and 4; details

are given in the Appendix. The "status" column in Table 1

shows for each bar if it is elastic (E), yielding in tension (r)

or compression (C), or buckling (B). A "stage" is the time spent

with no bar changing status, stage 1L is the limit of stage I as

bar I reaches yield and changes from E to C, etc.

As shown in Table I as w is increased first bar 3 and then

bar I yield in compression. However, as is clear fromt Fit. 1,

d mechanism motion with bar 2 rigid would require bar 3 to

iii
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lengthen. Therefore, in stage 3 bar I elastically unloads through zero

and eventually yields in tension as the yield-point load is reached.

The dashed curves in Figs. 3 and 4 respectively, show the load-

displacement history and the shortening history of bar 3.

Stages 1 and 2 do not involve unstressing or tensile yiliJ

that they are the same for the L/B model. Ilowevei, ir. stageu 3

as bar 3 starts to reclaim its buckling deformation, there is no

change in its force. Since bar 1 is now buckling C1 also le-

mains constant. Therefore, equilibrium shows that C and the loid

are also constant. Thus, as w increases bar AB rotates abuut the

unchanged location of the top of bar 2. However, this situatiun

lasts only until s 3 is reduced to s3 at which point it resumes

elastic behavior in stage 4. Since tensile yielding is not

considered, stage 4 continues until bar 2 reaches bucklinj. The

buckling collapse mechanism of the truss thus involves a Lot.Ation

about the top of bar 1. The results are shown by the solid

curves in Figs. 3 and 4. Notice the finite horizontal portion ut

the load-displacement curve in stage 3, followed by further incicase

of load in stale 4.

As a second example to illustrate iion-uniqueness, we consider

a tiuss with q. (4, 1, 2) where P is the only load. The

Qontrol variable v is to be increased from 0 to 1. For the E/1'1'

model the all-elastic stage I, shown in the top linie of r'able 2

ends when bars 1 and 3 both reach vompressive yield at the same

instant. Therefore, in stage 2, AC1 = AC 3 = 0 and since there is

no load U Eq. (9b) becomes an identity. Therefore, the only

itiformation about Aw comes from (8) and the inequ, lit i0s in (10})

for bar!; I and is:

*Other simple examples of non-uniqueness are disussu, in 141 and I',.

. . . . .. . . . . . . .. . . . . . . nan riga ~ . . . I . . n n . . . • . . . . . .
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As. 4Aw - 3Av > 0 As 3  2Av - Aw > 0 (iS)

These must apply for any infinitesimal inciement in Stie 2,

which leads to

3/4 < dw/dv < 2 (14)

as shown in the last column for stage 2. During this staqe the

load P must increase with v and the bar forces are all unique,

but w may take any value permitted by (14). However, we note

that once w has been established for any particular v, the

restrictions (14) apply from that point. Therefore, althou

not unique as v is increased, any solution reached is stable

if v is held constant at any time.

Figure 5 shows the strain-path trajectory of bars 1 and 3.

it is unique along OA in stage I, but during stage 2 it may follow any

path with positive slope in the domain ABC. In particular,

at stage 2L it may have reached any point on the line BC.

However, if the solution at v = 3/4 is observed to be at point D, say,

then the possible solutions when v = 1 are restricted to the segment

EF.

For the E/B model the equations and unique part of the

results are exactly the same, so that we have not repeated them

in Table 2. However, the inequalities apply to the total shorteninq

rather than instantaneous increments, so that (13) and (14) must

be replaced by

s = 1/4 s2 > a2 = 1/2

(3/4)v + 1/16 < w < 2v - 1/2 (15)

, £.6
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Not only is the solution for w not unique, it is only neutrally

stable and could change from one value to another with no chanje in

v. Thus, it staje 2L it could be any point on BC regardless of

its carlieir 'altes at v " 3/4.

The Iiiial example discusses superposition. We return t-

the first truss where u. = (2, 1,4) and control both v and w,1

increasing them from zero to w = 1/4, v = 1. For the E/PP

mode] the final loads depend upon the order in which the disp]Ace-

ments are increased. Suppose that they are applied in the ordei

v, w; i.e., v is increased to 1 with w held at zero, then v is

held at I while w is increased to 1/4. The light solid

curve ABCDE shows the history of load Q; P would have a similar

curve. Complete results may be found in the Appendix. The

final state when v = 1, w = 1/4 is shown in line 1 of Table 3.

On the other hand, if w is first increased to 1/4 and then v

is increased to 1, the history of Q is given by the heavy solid

curve AFGIIIJ in Fig. 6. Not only is the history quite different,

but the final load values (points E and J) do not even agree in sign.

Line 2 of Table 3 lists all final values.

If the principle of superposition were valid, we could

find two components corresponding to v-only and w-only displace-

ments and then add them. Lines 3 - 5 in Table 3 show the

final results, and we see that line 5 is quite different. than vuther

lines I or 2. In terms of Fig. 6, we could add the w-only -()u-

tion AFG to the v-only solution ABCD by translating the firnt

curve so that A is at D. The resulting curve ABC[)NM has its

nt-w part shown liht dashed.

The order ot superpositio0n, of course, does ntt m,,tlei.

It v-only is added to w-only, the curve AFG(KI.M has exact ly the :,.

terminal point M.

I.,



9

For the E/B model the shortenings, bar forces, and loads are

all unique functions of the instantaneous displacements, so that

curves ABCD and AFGHD in Fig. 7 both end at the same state U.

The complete solution at the final point v = 1, w = 1/4 is shown

in line 6 of Table 3. Observe that the loads are very much

different from those required by the E/PP model, essentially

because the latter had bar 1 with substantial yielding in tension.

However, as shown by lines 7, 8, 9 in Table 3 and by

cirves ABCL or AFKL in F~g. 7, the results of superpositiun

still do not agree with the actual solution.

'14



APPENDIX

We present here some of the intermedijite ste., oXj tHi'

examples in Section 3. During a stage in which all ll.IL JIU

elastic:, it follows from EqIs. (8) and the "ELSE" pitl Lt (1U)

or (11) that

AC. (4Aw - AV, 2Av -Aw) tAI)
i 1  a3

Furthei, if any bar is inelastic, the corresponding cumpOnent Of

AC.i is replaced by zero. Therefore, we can immedidtely wiltu

[ i

*an explicit expression for AC i in terms of Aw and Av tHA any

stage of loading.

Exa!ml1. in this example

a. (2, 1, 4) Y. (4, 16, 1)/1l6 S, 2 4, 1),-,

i

so that Eq. (Al) can be written

AC.i (8, 0, -1)Aw/4 + (-3, 2, l)Av//2 (A3)

!i

The only non-zero load is Q, hence it follows fromt Eq. (9,A)

All= -3AC + AC + 2AC 0 (A4)
1 2 3

StibStitut ion Of (A3) or its part ially inelast ic 1011 acoiicPL I

(A4) pioduces an equation which is easily solved for in term

of the control vaiiable Aw. Thus we begin with

e Stae 1. EEE

P (-24-2)Aw/4 + (9 + 2 + 2)h2

Av = Aw -A2 w

I A



For the E/PP model this stage will end when bar 3 reaches

compressive yield, i.e., when

C 3 =0 + Aw14 =1/16 Aw =w = 1/4 (A6)

Equations (AS) , (A6) , and (8) - (11) then determine the crnmic-te

solution fux stage l1. as given in line 1 ot Table 1.

For stage 2, Eq. (AS) is replaced by

Stage 2. EEC

AC. (2, 0, 0)Aw + (-3, 2, G)Av/2

Al' -6Aw + (9 + 2)Av/2 =0 Av =(12/11)Aw (M7)

This stage ends when bar 1 yield5 in compression. Since C1  /

at the end of stage 1 (see line 1 of Table 1), we have

C1  (1/8) + (4/ll)Lw =1/4 Aw = 11/32 (A8)

Equations WA), (AB), and (8) - (11) then give the complete

- increment solution during stage 2:

Av 3/8 As. (1/32)(8, 12, 13)

AC. (1/32)(4, 12, 0) AQ = 1/2 (A9)

When these are added to the stage IL values in line I of Table 1,

we obtain the complete solution at stage 2L as shown in line 2.

At this point it might appear logical to assume

Stag-e 3X. CEC

AC. (0, 1, 0)Av

*AP =Av 0 As1 (4, 0, -1)Aw (AIO) 4
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12

However, since Aw is positive, we would be predicting As 3 < 0

which is not consistent with the assumption of yielclinq. The IU -

foze, instead we write

St age 3. CEE

:IC. (0, 0, -I)Aw/4 4- (0, 2, 1)Av/2I

AP= -Aw/2 + (2+2)Av/2 = 0 Av = Aw/4 (All)

This stage ends when bar 3 yields in tension:

C3 = 1/16 - Aw/8 = -1/16

AW = I AV = 1/4 As. = (13, 1, -2)/41

AC. = (0, 2, -1)/B AQ = 1/8 (A12)
1

Addition of these values to those in line 2 of Table 1 prcoduces

the values in line 3.

In the final stage
ste4. CET

C. (0, Av, 0)
1

AP AV = AC s. = & Aw(4, 0, -1) (A13)

which is the collapse mechanism about the end of bar 2. Since

our program calls for w to increase to 3, we set Aw = 45/32

in Eqs. (A13) and add to line 3 to get line 4 in Table 1.

For the E/B model, Eqs. (A) through (A9) are still applicable

hence the solution is exactly the same throuqh st.Ne 21.

I . ,,
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However, since s3 = 21/32 is beyond the buckling value s 3 1/4,

Eq. (AIO) is a valid description with bar 3 unstressiny, but

remaining buckled, until

s3 = 21/32 - Aw = 1/4 Aw 13/32

Av = AP = AQ = AC. = 0 As. (13/32) (4, 0, -1) (A14)1 1

Addition of these values to line 2 gives line 5 in Table 1.

Bar 3 now resumes elastic behavior, hence stage 4 is described

by Eq. (A8). Since tensile yield is not considered, this stage

continues until bar 2 buckles:

s2  5/8 + Aw/4 = Aw= 5/2 Av = 5/8

AC. = 1/16(0, 6, -3) AQ = 3/16

As i  = (1/8)(39, 3, -6) (A15)

Addition of (A15) and line 5 of Table 1 produces line 6.

In the final stage

Stage 5. BBE

AC. = (0, 0, 2Av - Aw)/4

AP =Av - Aw/2 = 0 Av = Aw/2

Q AC = 0 As i = (5, 1, 0)Aw/2 (Alb)

This is a mechanism motion of rotation about bar 3 and will

continuu until w reaches its final value of 1. Thus line 7 t

Table 1 is obtained by setting Aw = 1/2 in (A16) and adding

the result to line 6.

h at
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Example 2. In this example Eqs. (A2) - (A4) are replaced by

U i  (4, 1, 2) Y i =  
(1, 16, 4)/Ib

s. (1, 4, 2)/4 (AlT)

A(_) 4AC - AC3  - 0 (A 1)

AC. (2, 0, -1)Aw/2 + (-3, 4, 4)Av/4 (A19)I

Therefore, we can find Aw in terms of the control variaible tv.

When all baLs are elastic, we use (A19) and obtain

Stage 1. EEE

AQ = (8 + l)Aw/2 + (-12 - 4)Av/4 = 0

AW = (8/9)Av (A20)

For the E/PP model this stage ends when bars I and 3 ruach yield

simultaneously at v = Av = 9/20 which leads to the values in

line I of Table 2.

In stage 2 bars I and 3 are both yielding hence

stae 2. CEC

AC. = (0, 1, 0)Av
I

AQ z 0 AP " Av

As I  = Aw(4, 0, -1) + Av(-3, 1, 2) (A21)

The only information available for Aw is in the Inequalities

(13). This stage ends when the remaining bar yields:

6
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C = 9/20 + Av = I Av = 11/20 (A22)

With this value of Av, the sum of liies 1 and 2 in Table

lives line 3.

Example 3. In these final examples the truss ptoperti.s

are ajain qiven by (A2) and the fully elastic force- increment

solution by (A3). Both v and w are controlled, and we will find

it c ,nvenient to express the kinematic and static equations

(8) and (9) in integrated form:

s = (4, 0, -l)w + (-3, 1, 2)v (A23)

Q 4C 1 - C3

P -3C I + C2 + 2C3 (A24)

Thus, given the control variables, (A23) gives an explicit

expression for the shortenings. Using (A2) or its non-elastic

replacement, we find the force increments, but we can wait

and use the integrated forces to find the loads directly from (A24).

In example 3A we first increase v to 1 and then increase

w to 1/4; in 3B we reach the same final values by increasinq

first w and then v.

The computations fall into a simple pattern and ate conveniently

presented in tabular form in Table 4. We consider first example

3A for an E/PP material. The zeroes in the unnumbered top

line emphasize that we start from the zero state and obtain the

solution by finite increments.

*1
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In stage 1 all bars are elastic and v is the active contzo/

variable. We denote its increment from zero by A in lIne! 1,

column 1, and express the bar-force increments in teimE f i

in column 3. In this incremental stage we do nOut neied th. te:.

in columns 2 o, 4. Stage I will terminate when bar 3 oi ,ahchs ih:,

yield value in compression. The resulting equation for the

increment A is written in column 5, and its solution is enteit:d

in column 6.

The solution at stage iL is then written in line 2.

Values for the displacements in column 1 and bar forces in colturni

3 are obtained by putting the value A = 1/8 in line I and

adding the result to the zero values at the beginning of stigje I.

Although we could treat the shortenings s and loads Q and P1

in the same incremental fashion, it is more convenient to use

(A23) and (A24) and complete columns 2 and 4 directly from the

w, v, and C. values in line 2.
1

Line 3 treats the next increment in the same way. In colurml

= 3, AC 1 and AC 2 still have their elastic values from (A3), but

AC3 = 0 since it is already yielding. Stage 2 terminates when

bar 1 yields in tension, which leads to the equation in column 5

and the solution A = 1/24 in column 6.

For line 4 we set A = 1/24 in line 3 and add the result to

line 2 to obtain values of w, v, and C.. Again, the values ofI

si, Q, and P are obtained directly from (A23) and (A24).

Lines 5 and 6 contain the solution for stages 3 and 31.

figured in the same way. No bar changes state before v reaches

its final value, hence the equation in column 5 is simply v - 1.

1.ine 6 is also recorded as line 3 in Table I as tnen v c-innttit

for "superposition".

Jt
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in stage 4 control switches to w. Since the elastic

solution for w increasing produces a positive AC

and negative AC3, both plastic bars now unload and all three bairs

are elastic in line 7. Now w reaches its final value with no b, r

changing state so the equation in column 5 is w = 1/4. Line

8 gives the final values for example 3A; the same values arc

recorded in line 1 of Table 3.

Example 3B for the E/PP material is treated in exactly

the same way. The details are displayed in lines 9-18 of Table 4,

and the final results from line 18 are recorded as line 2 of

Table 3. Also, line 12 of Table 4 is repeated as line 4 of

Table 3 for the w-component for "superposition".

For the E/B model and example 3A, stages 1, IL, and 2 are

the same as for the E/PP model. However, since the E/B model

does not have any constraint on allowable tensile loads, the

terminating condition is

v = 1/8 + A = 1 A = 7/8 (A25)

Substitution of this value in line 3 of Table 4 and addition

to line 2 gives the stage 2L solution in line 19 for the E/B

model. This line is also written as line 7 of Table 3.

Since bar 3 has undergone a finite amount of buckling,

it will remain in the buckled state in stage 3 as shown in line

20 of Table 4. In fact, it is still buckled when w reaches its

final value of 1/4. The final values at stage 3[L are listed in

line 21 of Table 4 and line 6 of Table 3. From column 2 and

the last Eq. (A2) we verify that bar 3 is still well within the

buckled state, bar 1 is in tension, and bar 2 is on the verje of

buck I inq.
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In example 3B the two models are exactly the sane through 5tc.,L:

2L. In stage 3 bar I will remain in the buckled state until

Its shortening reduces to s To determine buckl in u unbuLkli:,,i

criteria in this example it is necessary to have thu Ps

expressions available as given for example in line 22 column 2.

in this case the stage ends when bar 1 unbuckles at , /b.

Line 23 shows the solution at stage 3L. The shorteninq in

column 2 is, of course, the same whether it is computed by

adding the increment in line 22 to the value at stage 2L in line 12,

or directly from Eq. (A23).

The rest of the table is completed in the same fashion. As

noted, lines 27 and 21 are identical for this model.

0'
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(1) (2) (3) (4) (5) (6)

Line Stage Status - , .1 Ci Q p To-mete 6

IS 3A (SIPPI 0 0 0 0 0 0

1 1 SE 0 A (-3,2.1)6/2 C3 - 0 + 6/2 - 1/16 1/$

2 IL 0 1/8 (-3.1.2)/S (-3.2.1)/16 -13/16 13/16

3 2 aC 0 a (-3.2.0)6/2 C1  -3/16 - 3A/2 * -1/4 1/24

4 2L 0 1/6 (-3.1.2)/6 (-12.16.3)/48 -17/16 25/24

5 3 TSC 0 a (0.2,0)6/2 v-1/6 + 1 5/6

6 L 0 1 (-3.1.2) (-4.16.1)/16 -17/16 15/8

7 4 1. a 0 (8..-1)14 v 0 + 6 1/4 1/4

S 4L 114 1 (4.4.7)/4 (1.4.0)14 1 114

Ex 33(K/Ml 0 0 0 0 0 0

9 1 1IR 0- -( 10 + 26 - 1/4 1/8

10 IL 1/8 0 (4.0.-1)/8 (8.0.-1)/32 33/32 -13/16

11 2 cn 6 0 (0.0.-1)&/4 v1/8 + A - 1/4 1/8

L2 2L 1/4 0 (4.0.-1)/4 (4.0.-1)/16 17/16 -7/8

0i 3 SI 0 a (-3.2.1)6/2 C3 - -1/16 + 6/2 - 1/16 1/4

14 3L 1/4 1/4 (1.1.1)/4 (-2,4.1)/16 -9/16 3/4

15 4 S 0 A (-3.2.0)&/2 C 1  /0 - 3/2 - -1/4 1/12

16 4L 1/4 1/3 (0.4.5)/12 (-12.16.3)/48 -17/16 29124

17 5 INC 0 6 (0.2.0)A/2 v-1/3+ A - 1 2/3

is SL 1/4 1 (4.4.7)/4 (-4.16.1)/16 -17/16 15/8

Ix3A (91/)

19 a 0 1 (-3.1.2) (-24.16.1)/16 -97/16 45/8

20 3 6 a 0 (2.0.0)a 0 +6-1/4 1/4

21 3 1/4 1 (4.4.7)/4 (-16.16.1)/16 -45/16 33/8

22 3 811 0 a (-3.1.2)6 (0.2.1)6/2 * - 1-3. - 1/2 1/6

23 A 1/4 1/6 (6.2.1)/12 (12..1)/48 47/48 -13/24

24 4 Sn 0 a (-3.1.2)A (-3..1)12 e3 - 1/12 + 26- 1/4 1/12

25 4L 1/4 1/4 (1.1.1/4 (6.12.3)/48 7/L6 0

26 5 an 0 6 (-3.1.2)6 (-3.2.0)6/2 v - 1/4 + 6 -1 3/4

a7 SL 1/4 1 (4.4,7//4 (-16.16.1)/16 -/16 33/S

TAMS 4

Cetrele, ve at - (2.1.4)
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